Homeostasis as the Foundation for Feeding

Erin Sundseth Ross, Ph.D., CCC-SLP

1

Financial Disclosures

Erin Sundseth Ross, Ph.D.

Paid

- Intellectual Property, SOFFI™
- President, Feeding Fundamentals, LLC

Volunteer

Advocacy Chair, Feeding Matters

Objectives

- List the four subsystems of the Synactive Organization of **Behavioral Development**
- Define "Homeostasis" as it relates to development

© 2020, Erin Ross, All Rights Reserved

3

How Do We Develop?

How Do We Learn?

Dynamic Systems Theories

- All systems interact with each other
- All systems influence neonatal functional performance
- Biological components are not independent of each other, nor of physical and sociocultural environments

Sweeney, et al., 2010

© 2020, Erin Ross, All Rights Reserved

5

5

Synactive Organization of Behavioral Development

- Behavioral organization process
 - Subsystem interaction
 - Interdependence (synaction) of subsystems
- Behavioral organization supports the neonate in responding to the challenges presented by the extrauterine environment
- Caregivers observe and respond to the infant's behavior, which reflect the current functioning of the infant

Als. 1982

Feeding
Fundamentals

© 2020, Erin Ross, All Rights Reserved

Synactive Organization of Behavioral Development

Als, 1982 Reprinted with Permission

© 2020, Erin Ross, All Rights Reserved

Synactive 4 subsystems: Organization of Behavioral Development

- Autonomic
- Motor
- Behavioral State
- Attention/Interaction

© 2020, Erin Ross, All Rights Reserved

Homeostasis

"The ability to maintain internal regulation in the face of increasing challenges and demands (internal and external)"

© 2020, Erin Ross, All Rights Reserved

9

Homeostasis

Development of Homeostasis is supported in the uterine environment by the mother's body

- Allows a focus on internal regulation
 - Physiologic and motor system
 - Establishment of general behavioral state regulation
- Limited external demands

© 2020, Erin Ross, All Rights Reserved

Interaction

- Organization (or disorganization) of one system similarly influences the other systems through synaction
- Through organization, the infant can reach homeostasis (first internal, then external)
- Homeostasis supports infant's striving for the next challenge (e.g., feeding)

© 2020, Erin Ross, All Rights Reserved

11

11

Homeostasis

Preterm babies:

- Underdeveloped internal regulation
- Increased external demands in the NICU

Medical comorbidities:

- Interfere with internal regulation
- Limit ability of infant to tolerate external demands

© 2020, Erin Ross, All Rights Reserved

Internal Regulation is Key!

- Once regulation is achieved, the infant can focus attention outward
- Regulation is NOT the absence of medical problems...
- Feeding requires an ability to focus attention outward

© 2020, Erin Ross, All Rights Reserved

13

Oral Feeding Readiness

- Oral feeding readiness is affected by :
 - Neurodevelopmental maturity
 - · Behavioral state organization
 - Physiologic stability
- And, is influenced by:
 - Caregivers
 - Environmental factors

Kish, 2013

Experience

"Practice is everything. This is often misquoted as practice makes perfect."

> -Periander 665-580 BC

15

Theory of Neuronal Group Selection

- The brain is a selective system
- The brain is strongly influenced by signals, provided by the infant's body and the infant's interactions with the environment (internal and external challenges)
- The brain is continually changing in response to these signals

Edelman, 1987

Experiential Selection

- After birth, infant interacts with environment (distal and proximal)
- Environment provides experiences that drive changes in development
- Synaptic connections are either strengthened through repetitive activation, or weakened through "disuse"

Edelman, 1987

© 2020, Erin Ross, All Rights Reserved

17

Re-Entrant Mapping

- Neural maps are selected through past and present experiences, and link to form integrated connections
- Global mappings are created that involve motor and sensory systems
- Through repetition, infant selects patterns that most successfully support their developmental strivings

Edelman, 1987

All Experience Matters!

The pathways you intend to create may not be the only pathways you are creating

19

What Goes Wrong?

- Through repetition, the infant selects patterns that most successfully support their developmental strivings
- If an infant is not improving, is regressing in feedings, or developing an oral aversion, ASK WHY
 - Why is stopping eating or not eating BETTER than eating??

Application to Feeding Development

bell

 $\ \odot$ 2020, Erin Ross, All Rights Reserved

21

© 2020, Erin Ross, All Rights Reserved

22

Pavlov, 1927

salivation

23

Feeding Problems

- Parental questionnaires at 3, 6, and 12 months (adj)
- Compared early born (25 to 33.6 weeks GA) and later born (34 to 36.6 weeks GA) groups
- No significant differences between groups for:
 - Low appetite 12-14% across study
 - High avoidant behavior 2-4% (3, 6 mos)
 - Med-High Maternal anxiety 25-39% (3, 6 mos)

4

DeMauro et al, 2011

Feeding Fundamentals

Prevalence of Feeding Difficulties

- 48% of infants born 32-36 weeks gestation, compared
 to 9.5% of term infants had feeding difficulties at discharge
 (Jonsson, et al, 2013)
- 23% of infants had feeding difficulties at 2 years of age (Crapnell, et al., 2013)
- 7.41% to 11% reported to have feeding difficulties at 3 years of age (Gallardo, et al., 2017)

Feeding Fundamentals

© 2020, Erin Ross, All Rights Reserved

2

25

Outcomes at 2 years of age

Subjects: 234 preterm born <33 weeks GA

245 term infants

Preterm infants:

- Worse drive to eat score (P = 0.001)
- Lower food repertoire score (P = 0.05)

Migraine, et al., 2013

Feeding Fundamentals

© 2020, Erin Ross, All Rights Reserved

Eating difficulties at 2 years of age

- Subjects: N=651 late-moderate preterm (32-36 wks), 771 term
- In unadjusted analyses, LMPT infants were at increased risk:
 - Refusal/picky eating (RR: 1.53; 95% CI: 1.03, 2.25)
 - Oral motor problems (RR: 1.62; 95% CI: 1.06, 2.47)
- Independently associated with eating difficulties:
 - Prolonged nasogastric feeding >2 wk (RR: 1.87; 95% CI: 1.07, 3.25)

Johnson, et al, 2016

Feeding Fundamentals

© 2020, Erin Ross, All Rights Reserved

...., ..., _..

2

27

HOMEOSTASIS

The ability to

MAINTAIN

internal regulation in the face of increasing challenges and demands

Feeding Fundamentals

Effect of Waiting for Better Internal Regulation

- Randomize Controlled Trial (RCT) to assess effect of having a 1 week delay in initiation of oral feeding (skills on Day 0 and 3, achievement of full oral feedings)
 - 18 infants (C) started oral feeding when they were "physiologically stable" (mean 33.8 wks)
 - 22 infants (E) started one week later (mean 34.7 wks)

Wang, 2018

© 2020, Erin Ross, All Rights Reserved

29

Effect of Waiting for Better Internal Regulation

- Non-significant findings:
 - Full oral feedings (36.3wks C, 36.2wks E)
 - Daily weight gain (22.8 grams C, 21.5 grams E)
 - Total intake
 - Feeding duration
 - Feeding efficiency at 2 time points

Wang, 2018

Effect of Waiting for Better Internal Regulation

- Similar heartrates (HR) prior to feedings
- Increase in HR during feedings noted in both groups on Day 0
- Significantly lower HR in E group by Day 3 (P = .04)
- Number of desaturations significantly different during feeding:
 - BEFORE: Day 0 (C=9, E=1, P =.002)
 - DURING: Day 0 (C=11, E=2, P <.001)
 - DURING: Day 3 (C=13, E=5, P=.004)

Wang, 2018

© 2020, Erin Ross, All Rights Reserved

31

Shifting the Focus...

- Infant feeding begins with reflexive motor patterns that integrate beginning between 2 and 4 months of age adjusted
- Once the reflexive pathways are integrated, feeding difficulties may become apparent (e.g., refusals)
- If we use interventions to improve comfort during feedings, we can then build global neural networks that support feeding across this time period

Feeding
Fundamentals

Key Take Home Points

- Eating begins with Internal Regulation
- Learning begins with Classical Conditioning
- Feeding should be a positive experience
- The concept of Homeostasis can guide decisions regarding initiation of and progression for oral feedings

© 2020, Erin Ross, All Rights Reserved

Fundamentals

Feeding is the experience...

© 2020, Erin Ross, All Rights Reserved